师资队伍

当前您的位置: 首页 > 师资队伍 > 教研人员 > W > 正文

王燕 长聘教授

联系电话:010-62772373

E-mail:wangy46@tsinghua.edu.cn

通信地址:北京清华大学东主楼9区123房间,邮编100084

王燕:女,1967年出生,清华大学集成电路学院长聘教授,模型模拟团队负责人。于1988年和1991年分别获得西安交通大学电子工程系工学学士学位和工学硕士学位,于1995年获得中国科学院半导体研究所半导体物理与器件专业理学博士学位。1999年进入清华大学微电子学研究所CAD技术研究室工作,2004年晋升为教授。2000年至2018年期间,曾任CAD技术研究室副主任、主任,微电子学研究所党委副书记、微电子学研究所副所长、微纳电子系副主任。目前担任国际期刊Journal of Computational Electronics副主编;国家新能源汽车技术创新中心技术专家委员会委员;中国仿真协会集成微系统建模与仿真专业委员会副主任委员;西安交通大学电子物理与器件教育部重点实验室第五届学术委员会委员;中国电机工程学会电力电子器件专业委员会第一届委员。

研究方向为器件建模与EDA工具开发,微波/毫米波集成电路设计、宽禁带半导体(SiC、GaN、金刚石)器件与模块研制。作为负责人承担了多项973、863、国家重大研究计划、国家重大科技专项、国家自然科学基金项目以及企业委托科研项目。主要学术贡献包括:(1) 建立了基于阈值电压和表面势的GaN HEMT器件的解析模型,研究结果在国内属首次并达到了国际先进水平。该模型已成功地嵌入香港AOE计划建立的交互式在线模型模拟平台:i-MOS(Website: i-mos.org),并向全世界开放。(2)与国内最大的IC制造企业—中芯国际合作开展新技术节点(65nm至14nm)的模型模拟研究,开发了射频晶体管的小信号和大信号模型;建立了电感、变压器和传输线等无源元件的模型及相应的提参方法,为中芯国际提供了28nm晶体管关键电学参数如接触电阻、沟道电阻及迁移率的提取方法,为其新技术节点的工艺开发提供了指导。(3)在CMOS毫米波Gbps无线通信系统的架构设计、关键电路设计、有源无源器件建模、电路/电磁联合仿真的设计方法等方面进行了深入的探索,率团队成功研制出了国内首款CMOS 60GHz射频前端的单片全集成芯片,最高支持6Gbps的物理层通信速率和16QAM调制方式;在此基础上,在国内率先开发出28G、94G面向5G/6G通信的4通道硅基相控阵射频前端芯片,性能达到了国际先进水平。(4)研制出国内第一个反向阻断电压达到特高压(10KV)的SiC门极可关断晶闸管(GTO),性能处于国际先进水平。(5)提出一种基于自适应学习的统计测试与统计分析方法,能有效提升获取和分析IC工艺浮动下的元器件特性数据,经流片验证,可辅助设计者更高效地完成器件设计与建模。(6)提出了一种以性能模型为中心的集成电路系统级自动优化框架,能高效地完成系统指标的制定、划分与优化,经电路设计验证,可辅助设计者快速完成电路系统级的设计。

带领团队完成的项目“集成电路建模与仿真关键技术”于2018年获得中国仿真协会科技进步一等奖(排名第一);在国内外著名期刊和会议上发表学术论文200余篇,获得中外授权发明专利数十项;指导的学生多次获得国际会议最佳论文奖;曾获清华大学首届“教书育人奖”、校级先进工作者和良师益友等荣誉称号。


作为主讲教师的教学工作:

1.本科生专业核心课《半导体物理与器件I》(64学时)

2.研究生课程《纳米电子器件》(32学时)

作为课题负责人的部分在研项目:

1.碳基/硅基CMOS 电路的混合集成(重大研究计划)

2.基于14nm CMOS工艺节点的建模技术研究(企业委托)

3.10KV SiC 门极可关断晶闸管(GTO)芯片开发与封装应用(北京市科委重点项目)

4.满足5G 毫米波终端应用的高性能宽带接收机和低功耗高性能VCO设计研发(03专项)

5. 毫米波相控阵芯片(企业委托)

6.70G高频测试去嵌技术(企业委托)

7. 高速ESD方案设计与表征(企业委托)


2017-2020年代表性论文:

1. Yang Tongtong, Wang Yan, Yue Ruifeng, "SiC Trench MOSFET With Reduced Switching Loss and Increased Short-Circuit Capability", IEEE Transactions on Electron Devices, Volume: 67,Issue: 9, P 3685-3690, 2020.

2. T. Yang, Y. Wang, R. Yue. A Heterojunction-based SiC Power Double Trench MOSFET with Improved Switching Performance and Reverse Recovery, Superlattices and Microstructures, 140 (2020) 106466.

3. Wei Zhu, Xiaohan Zhang, Jiawen Wang,Yan Wang, A Bidirectional 56–72GHz to 10.56GHz Tranceiver Front-End with Integrated T/R Switches in 28-nm CMOS Technology,2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Paper Id: 294-AZ109.

4. Wei Zhu,Xiaohan Zhang,Yan Wang,Jiawen Wang,Wei Lv,A 24-28 GHz Power and Area Efficient 4-Element Phased-Array Transceiver Front-End with 21.1%/16.6%Transmitter Peak/OP1dB PAE Supporting 2.4 Gb/s in 256-QAM for 5-G Communications,2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)Paper Id: 294-FC267.

5. Wenfei Hu, Zuochang Ye, Yan Wang,Adjoint Transient Sensitivity Analysis for Objective Functions Associated to Many Time Points,Design Automation Conference(DAC)2020.

6. W. Zhang, H. Zhu, H. Yue, Z. Wen, Y. Tang and Y. Wang. An Angelov large-signal FET model up to 67 GHz. IEEE Transactions on Electron Devices, 2019, 66(6):2577-2582.

7. W. Zhang, Y. Tang, D. Wang and Y. Wang. A novel empirical model for CMOS Schottky diodes up to 67 GHz. IEEE Transactions on Electron Devices, 2019:1-6.

8. W. Zhu, L. Zhang and Y. Wang, "A 10.56-GHz Broadband Transceiver With Integrated T/R Switching via Matching Network Reuse and 0.3–2.1-GHz Baseband in 28-nm CMOS Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 2599-2617, July 2019.

9. Wei Zhu, Wei Lv, Bingbing Liao, Yanping Zhu, Yuefei Dai, Pei Li, Lei Zhang, and Yan Wang,., "A 21 to 30-GHz Merged Digital-Controlled High Resolution Phase Shifter-Programmable Gain Amplifier with Orthogonal Phase and Gain Control for 5-G Phase Array Application," 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019, pp. 67-70.

10. Dong Huang, Li Zhang, Huabing Zhu, Boshen Chen, Yang Tang and Yan Wang,A 94GHz 2×2 Phased-Array FMCW Imaging Radar Transceiver with 11dBm Output Power and 10.5dB NF in 65nm CMOS,IEEE Radio-Frequency Integr. Circuits Symp. (RFIC), Boston, MA, U.S.A., Jun. 2019.

11. Zhijian Pan ; Chuan Qin,; Zuochang Ye,; ; Zhiping Yu, Yan Wang. Wide band Inductorless Low-Power LNAs with Gm Enhancement and Noise-Cancellation, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS,, 2018.1.30, 65(1):26~38.

12. Dong Huang ; Lei Zhang ; Li Zhang; Yan Wang. A 60-GHz, 15-dB Gain Range Digitally Controlled Phase-Inverting VGA With 0-dBm OP1 dB and 3° Phase Variation in 65-nm CMOS, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2018.9.30, 28(9): 819~821.

13. Xintian Zhou , Hongyuan Su, Gang Dai, Juntao Li, Yan Wang, Ruifeng Yue. A Deep Insight Into the Degradation of 1.2-kV 4H-SiC mosfets Under Repetitive Unclamped Inductive Switching Stresses, IEEE Transactions on Power Electronics, 33(6): 5251~5261, 2018.

14. C. N. Zhou, Y. Wang, R. F. Yue, J. Zhang, G. Dai, and J. T. Li. “10 kV 4H-SiC Gate Turn-Off Thyristors with Space-Modulated Buffer Trench Three-Step JTE”, IEEE Electron Device Letters, vol.39, no.8, pp.1199-1202, 2018.

15. Zhijian Pan ; Miao Li; Jian Yao; Hong Lu; Zuochang Ye; Yanfeng Li; Yan Wang , Low-Cost High-Accuracy Variation Characterization for Nanoscale IC Technologies via Novel Learningbased Techniques, 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE) (获得最佳论文奖), 2018.3.19-23 .

16. W. Zhu, L. Zhang and Y. Wang, "A 10.56-GHz Broadband Transceiver with Integrated T/R Switching via Matching Network Re-use in 28-nm CMOS Technology," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, 2018, pp. 340-343.

17. Xintian Zhou, Jian Zhang, Gang Dai, Juntao Li, Yan Wang, Ruifeng Yue. 4H-SiC Trench MOSFET With Floating/Grounded Junction Barrier-controlled Gate Structure, IEEE Transactions on Electron Devices, 64(11):4568~4574, 2017.

18. Cai-Neng Zhou, Yan Wang, Gang Dai, Jun-Tao Li, Rui-Feng Yue. Step JTE,an Edge Termination for UHV SiC Power Devices With Increased Tolerances to JTE Dose and Surface Charges, IEEE Transactions on Electron Devices, 64(3): 1193~1196, 2017.