任天令

1061E?e=.png

 


任天令 长聘教授

 

通信地址:任天令教授,清华大学集成电路学院

邮编:100084

Tel:010-62798569

Fax:010-62771130

E-mail:RenTL@tsinghua.edu.cn

 

 

 

 

 

 

 

任天令教授,清华大学信息科学技术学院副院长,教育部长江学者特聘教授,国家杰出青年基金获得者,清华大学环境与健康传感技术研究中心副主任。

 

简介:

籍贯山东省济南市,1997年博士毕业于清华大学现代应用物理系,2003年起担任清华大学微电子所(集成电路学院)教授,2011年至2012年为美国斯坦福大学(Stanford University)大学电子工程系访问教授。

近年来,承担国家自然科学重点基金、国家重大科技专项、国家公益性行业科研专项、国家重大仪器专项、国家863计划、国家973计划等多项国家重要科技项目,做出一系列具有重要国际影响的创新学术成果。主要研究方向为新型智能微纳电子器件、芯片与系统,包括:智能传感器与智能集成系统,二维纳电子器件与芯片,柔性、可穿戴器件芯片与系统,智能信息器件与系统技术等。近期代表性创新成果包括:世界上栅极物理尺寸最小的晶体管、智能人工喉、智能人工耳膜、新型三维人机交互器件芯片、新型不挥发存储芯片、光谱可调的发光器件、智能仿生突触芯片等。在国内外重要学术期刊和会议发表论文700余篇,包括Nature、Nature Electronics、Nature Communications、Energy & Environmental Science、Advanced Materials、ACS Nano、Nano Letters、IEEE Electron Device Letters、IEEE Journal of Solid-State Circuits、Biosensors & Bioelectronics、Nanoscale、Carbon、IEEE Transactions on Electron Devices、IEEE Transactions on Microwave Theory and Techniques、IEEE Sensors Journal等重要SCI期刊论文,以及国际微电子领域顶级学术会议IEDM论文(15篇)。荣获Elsevier评选的“中国大陆高被引学者”(2018、2019、2021年)。获得国内外发明专利70余项。

近年来,担任或曾任IEEE电子器件学会副主席(中国大陆首次)、国际微电子领域顶级学术会议IEDM执委(中国大陆首次)、IEEE电子器件学会教育委员会主席(中国大陆首次)、中国微米纳米技术学会理事、中国仪器仪表学会微纳器件与系统技术分会常务理事、IEEE电子器件学会Distinguished Lecturer、IEEE EDTM 执委、IEEE Journal of Electron Device Society编委、IEEE Transactions on Nanotechnology 编委和Scientific Reports编委等重要学术任职。

多年来,任天令教授作为导师悉心培养了一百多名优秀的清华大学博士、硕士研究生与本科生,数十名同学荣获清华大学特等奖学金(本科生,研究生)、研究生学术新秀、优秀毕业生、优秀学位论文、启航金奖、未来学者计划、IEEE博士/硕士研究生奖、国际学术会议最佳论文等一系列国内外重要学术荣誉。2016年和2020年,任天令教授两度荣获“清华大学良师益友”。


主讲课程:

本科生专业课程《纳电子学导论》

研究生专业课程《新型微纳电子材料与器件》


主要学术荣誉:

中国电子学会自然科学一等奖,2018

长江学者特聘教授,国家教育部,2012

国家杰出青年基金获得者,国家自然科学基金委员会,2010

新世纪优秀人才支持计划,教育部,2004

高等院校青年教师奖,霍英东教育基金会,2003

清华大学学术新人奖,清华大学,2002

“石墨烯智能人工喉”荣获科技导报评选的“中国十大重大技术进展”,2017

“人工智能微纳电子器件”荣获“清华大学十大重大学术成果”,2017

 

主要研究方向为新型智能微纳电子器件、芯片与系统,包括:

1. 新型二维智能电子器件、芯片与集成系统:

(1)基于石墨烯的智能柔性声学系统;

(2)基于新型二维材料的类神经芯片;

(3)二维电子器件的片上集成关键技术;

(4)智能光电与射线探测器件与芯片系统;

2. 先进信息器件与芯片技术:

(1)新型不挥发存储芯片,存算融合及非冯架构芯片技术;

(2)基于磁阻效应或自旋调控的新型器件、芯片技术;

(3)芯片能量控制、芯片信息安全关键新技术;

(4)面向先进通信技术的射频滤波器、微天线、微电感等;

3. 智能感知芯片与智能微系统:

(1)柔性、可穿戴智能器件芯片,以及面向元宇宙、医疗健康的新型感知技术;

(2)面向智慧环境、智能汽车、智慧农业等应用的新型传感、探测芯片及系统技术。

(3)微纳声学器件芯片与系统(语音交互、超声影像等);

(4)集成微传感器芯片(压力、温度、加速度、红外传感器等);


近几年部分代表性论文:

2022

[1] F. Wu. H. Tian, Y. Shen, Z. Hou, J. Ren, G. Gou, Y. Sun, Y. Yang, and T.-L Ren, “Vertical MoS2 transistors with sub-1-nm gate lengths”. Nature, Mar. 2022. DOI: 10.1038/s41586-021-04323-3.

[2] G. Gou, X. Li, J. Jian, H. Tian, F. Wu, J. Ren, X. Geng, J. Xu, Y. Qiao, Z. Yan, G. Dun, C.W. Ahn, Y. Yang, and T.-L. Ren, “Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum”. Science Advances, Apr. 2022. DOI: 10.1126/sciadv.abn2156.

[3] J. Xu, X. Li, H. Chang, B. Zhao, X. Tan, Y. Yang, H. Tian, S. Zhang, and T.-L. Ren, “Electrooculography and Tactile Perception Collaborative Interface for 3D Human–Machine Interaction”. ACS Nano, Apr. 2022. DOI: 10.1021/acsnano.2c01310.

[4] Y. Qiao, X. Li, J. Wang, S. Ji, T. Hirtz, H. Tian, J. Jian, T. Cui, Y. Dong, X. Xu, F. Wang, H. Wang, J. Zhou, Y. Yang, T. Someya, and T.-L. Ren, “Intelligent and Multifunctional Graphene Nanomesh Electronic Skin with High Comfort”. Small, Feb. 2022. DOI: 10.1002/smll.202104810.

[5] J. Xu, H. Chang, B. Zhao, R. Li, T. Cui, J. Jian, Y. Yang, H. Tian, S. Zhang, and T.-L. Ren, “Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability”. Chemical Engineering Journal, Mar. 2022. DOI: 10.1016/j.cej.2021.133908.

 

2021

[6] X. Tan, J. Xu, J. Jian, G. Dun, T. Cui, Y. Yang, and T.-L Ren, “Programmable Sensitivity Screening of Strain Sensors by Local Electrical and Mechanical Properties Coupling”. ACS Nano, Dec. 2021. DOI: 10.1021/acsnano.1c09288.

[7] Y. Wei, X. Li, Y. Wang, T. Hirtz, Z. Guo, Y. Qiao, T. Cui, H. Tian, Y. Yang, and T.-L. Ren, “Graphene-Based Multifunctional Textile for Sensing and Actuating”. ACS Nano, Nov. 2021. DOI: 10.1021/acsnano.1c05701.

[8] J. Xu, R. Li, S. Ji, B. Zhao, T. Cui, X. Tan, G. Gou, J. Jian, H. Xu, Y. Qiao, Y. Yang, S. Zhang, and T.-L. Ren, “Multifunctional Graphene Microstructures Inspired by Honeycomb for Ultrahigh Performance Electromagnetic Interference Shielding and Wearable Applications”. ACS Nano, Apr. 2021. DOI: 10.1021/acsnano.1c01552.

[9] T. Cui, Y. Qiao, J. Gao, C. Wang, Y. Zhang, L. Han, Y. Yang, and T.-L. Ren, “Ultrasensitive Detection of COVID-19 Causative Virus (SARS-CoV-2) Spike Protein Using Laser Induced Graphene Field-Effect Transistor”. Molecules, Nov. 2021. DOI: 10.3390/molecules26226947.

[10] F. Wu, J. Ren, Y. Yang, Z. Yan, H. Tian, G. Gou, X. Wang, Z. Zhang, X. Ying, X. Wu, and T.-L. Ren, “A 10 nm Short Channel MoS2 Transistor without the Resolution Requirement of Photolithography”. Advanced Electronic Materials, Dec. 2021. DOI: 10.1002/aelm.202100543.

[11] F. Wu, H. Tian, Z. Yan, J. Ren, T. Hirtz, G. Gou, Y. Shen, Y. Yang, and T.-L. Ren, “Gate-Tunable Negative Differential Resistance Behaviors in a hBN-Encapsulated BP-MoS2 Heterojunction”. ACS. Appl. Mater. Interfaces, May. 2021. DOI: 10.1021/acsami.1c03959.

[12] F. Wu, H. Tian, Z. Yan, Y. Shen, J. Ren, Y. Yang, and T.-L. Ren, “Transistor Subthreshold Swing Lowered by 2-D Heterostructures”. IEEE Transactions on Electron Devices, Jan. 2021. DOI: 10.1109/TED.2020.3040350.

 

2020

[13] Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz, X. Li, Y. Fu, Y. Wei, G. Deng, Y. Yang, X. Wu, and T.-L. Ren, “Triode-Mimicking Graphene Pressure Sensor with Positive Resistance Variation for Physiology and Motion Monitoring”. ACS Nano, July. 2020. DOI: 10.1021/acsnano.0c03294.

[14] X. Geng, F. Wang, H. Tian, Q. Feng, H. Zhang, R. Liang, Y. Shen, Z. Ju, G. Gou, N. Deng, Y. Li, J. Ren, D. Xie, Y. Yang, T.-L. Ren. “Ultrafast Photodetector by Integrating Perovskite Directly on Silicon Wafer”. ACS Nano, Feb. 2020. DOI: 10.1021/acsnano.9b06345.

[15] Y. Qiao, Y. Wang, J. Jian, M. Li, G. Jiang, X. Li, G. Deng, S. Ji, Y. Wei, Y. Pang, Q. Wu, H. Tian, Y. Yang, X. Wu, and T.-L. Ren, “Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene”. Carbon, Jan. 2020. DOI: 10.1016/j.carbon.2019.08.032.

[16] J. Xu, T. Cui, T. Hirtz, Y. Qiao, X. Li, F. Zhong, X. Han, Y. Yang, S. Zhang, and T.-L. Ren, “Highly Transparent and Sensitive Graphene Sensors for Continuous and Non-invasive Intraocular Pressure Monitoring”. ACS Appl. Mater. Interfaces, Mar. 2020. DOI: 10.1021/acsami.0c02991.

[17] H. Liu, T. Lu, Y. Li, Z. Ju, R. Zhao, J. Li, M. Shao, H. Zhang, R. Liang, X.R. Wang, R. Guo, J. Chen, Y. Yang, and T.-L. Ren, “Flexible Quasi-van der Waals Ferroelectric Hafnium-Based Oxide for Integrated High-Performance Nonvolatile Memory”. Advanced Science, Aug. 2020. DOI: 10.1002/advs.202001266.

[18] Y. Qiao, X. Li, J. Jian, Q. Wu, Y. Wei, H. Shuai, T. Hirtz, Y. Zhi, G. Deng, Y. Wang, G. Gou, J. Xu, T. Cui, H. Tian, Y. Yang, and T.-L. Ren, “Substrate-Free Multilayer Graphene Electronic Skin for Intelligent Diagnosis”. ACS Appl. Mater. Interfaces, Oct. 2020. DOI: 10.1021/acsami.0c12440.

[19] H. Tian, X. Wang, Y. Qiao, Y. Yang, and T.-L. Ren, “Anomalous thermoacoustic effect in topological insulator for sound applications”. Appl. Phys. Lett., Sep. 2020. DOI: 10.1063/5.0017878.

 

2019

[20] Y. Wei, Y. Qiao, G. Jiang, Y. Wang, F. Wang, M. Li, Y. Zhao, Y. Tian, G. Gou, S. Tan, H. Tian, Y. Yang, and T.-L. Ren, “A Wearable Skinlike Ultra-Sensitive Artificial Graphene Throat”. ACS Nano, July. 2019. DOI: 10.1021/acsnano.9b03218.

[21] Q. Zhang, X. Wang, S. Shen, Q. Lu, X. Liu, H. Li, J. Zheng, C. Yu, X. Zhong, L. Gu, T.-L. Ren, and L. Jiao. “Simultaneous synthesis and integration of two-dimensional electronic components”. Nature Electronics, Apr. 2019. DOI: 10.1038/s41928-019-0233-2.

[22] X. Wang, H. Tian, Y. Liu, S. Shen, Z. Yan, N. Deng, Y. Yang, and T.-L. Ren, “Two-Mode MoS2 Filament Transistor with Extremely Low Subthreshold Swing and Record High On/Off Ratio”. ACS Nano, Jan. 2019. DOI: 10.1021/acsnano.8b08876.

[23] G. Gou, M.L. Jin, B. Lee, H. Tian, F. Wu, Y. Li, Z. Ju, J. Jian, X. Geng, J. Ren, Y. Wei, G. Jiang, Y. Qiao, X. Li, S.J. Kim, M. Gao, H. Jung, C.W. Ahn, Y. Yang, and T.-L. Ren, “Flexible Two-Dimensional Ti3C2 MXene Films as Thermoacoustic Devices”. ACS Nano, Sep. 2019. DOI: 10.1021/acsnano.9b03889.

[24] Y. Li, Y. Tian, M. Sun, T. Tu, Z. Ju, G. Gou, Y. Zhao, Z. Yan, F. Wu, D. Xie, H. Tian, Y. Yang, and T.-L. Ren, “Graphene-Based Devices for Thermal Energy Conversion and Utilization”. Advanced Functional Materials, Oct. 2019. DOI: 10.1002/adfm.201903888.

[25] S. Shen, X. Wang, Y. Tian, M. Li, Y. Yang, and T.-L. Ren, “Laser-reconfigured MoS2/ZnO van der Waals synapse”. Nanoscale, Jun. 2019. DOI: 10.1039/C9NR01748H.

[26] Y. Li, J. Li, R. Liang, R. Zhao, B. Xiong, H. Liu, H. Tian, Y. Yang, and T.-L. Ren, “Switching dynamics of ferroelectric HfO2-ZrO2 with various ZrO2 contents”. Appl. Phys. Lett., Apr. 2019. DOI: 10.1063/1.5093793.

 

2018

[27] Y. Qiao, Y. Wang, H. Tian, M. Li, J.Jian, Y. Wei, Y. Tian, D. Wang, Y. Pang, X. Geng, X. Wang, Y. Zhao, H. Wang, N. Deng, M. Jian, Y. Zhang, R. Liang, Y. Yang, and T.-L Ren, “Multilayer Graphene Epidermal Electronic Skin”. ACS Nano, Jul. 2018. DOI: 10.1021/acsnano.8b02162.

[28] Z. Yang, Y. Pang, X. Han, Y. Yang, J. Ling, M. Jian, Y. Zhang, Y. Yang, and T.-L. Ren, “Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection”. ACS Nano, Aug. 2018. DOI: 10.1021/acsnano.8b03391.

[29] Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, and T.-L. Ren, “Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity”. ACS Nano, Jan. 2018. DOI: 10.1021/acsnano.7b07613.

[30] Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling, Y. Li, X. Wang, Y. Qiao, H. Tian, Y. Yang, and T.-L. Ren, “Wearable humidity sensor based on porous graphene network for respiration monitoring”. Biosensors & Bioelectronics, Sept. 2018. DOI: 10.1016/j.bios.2018.05.038.

[31] Z. Yang, D. Wang, Y. Pang, Y. Li, Q. Wang, T. Zhang, J. Wang, X. Liu, Y. Yang, J. Jian, M. Jian, Y. Zhang, Y. Yang, and T.-L Ren, “Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor”. ACS Appl. Mater. Interfaces, Jan. 2018. DOI: 10.1021/acsami.7b16284.

[32] Y. Yang, L. Tao, Y. Pang, H. Tian, Z. Ju, X. Wu, Y. Yang, and T.-L. Ren, “An ultrasensitive strain sensor with a wide strain range based on graphene armour scales”. Nanoscale, Jun. 2018,DOI: 10.1039/c8nr02652a.

[33] Y. Li, H. Tian, H, Zhao, M, Jian, Y. Lv, Y. Tian, Q. Wang, Y. Yang, Y. Xiang, Y. Zhang, and T.-L. Ren, “A novel cell-scale bio-nanogenerator based on electron–ion interaction for fast light power conversion”. Nanoscale, Jan. 2018. DOI: 10.1039/C7NR07671A.

 

2017

[34] L. Tao, H. Tian, Y. Liu, Z. Y. Ju, Y. Pang, Y. Chen, D. Wang, X. Tian, J. C. Yan, N. Deng, Y. Yang, and T.-L. Ren, “An intelligent artificial throat with sound-sensing ability based on laser induced graphene”. Nature Communications, Feb. 2017, DOI: 10.1038/ncomms14579.

[35] H. Tian, W. Mi, H. Zhao, M. A. Mohammad, Y. Yang, P. W. Chiu, and T.-L. Ren, “A Novel Artificial Synapse with Dual Modes using Bilayer Graphene as the Bottom Electrode”. Nanoscale, Jul. 2017, DOI: 10.1039/C7NR03106H.

[36] L. Tao, D. Wang, H. Tian, Z.Y. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T.-L. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions”. Nanoscale, Jun. 2017, DOI: 10.1039/C7NR01862B.

[37] Y. Liu, L. Tao, D. Wang, T. Zhang, Y. Yang, and T.-L. Ren, “Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure”. Appl. Phys. Lett., Mar. 2017, DOI: 10.1063/1.4978374.

[38] Z. Zhang, H. Tian, P. Lv, Y. Yang, Q. Yang, S. Yang, G. Wang, and T.-L. Ren, “High-performance sound source devices based on graphene woven fabrics”. Appl. Phys. Lett., Feb. 2017, DOI: 10.1063/1.4977706.

[39] J. Wang, Y. Li, C. Yin, Y. Yang, T.-L. Ren, “Long-Term Depression Mimicked in an IGZO-based Synaptic Transistor”. IEEE Electron Device Letters, Feb. 2017, DOI: 10.1109/LED.2016.2639539.

[40] J. Wang, Y. li, Y. Yang, T.-L. Ren, “Top-Gate Electric-Double-Layer IZO-based Synaptic Transistors for Neuron Networks” IEEE Electron Device Letters, May. 2017, DOI: 10.1109/LED.2017.2690278.

 

2016

[41] L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Chen, Q. Xie, H. Zhao, Y. Yang, and T.-L. Ren, “Tunable and wearable high performance strain sensors based on laser patterned graphene flakes”. in 2016 IEEE International Electron Devices Meeting (IEDM). DOI: 10.1109/IEDM.2016.7838445.

[42] Q. Xie, Z. Ju, H. Tian, L. Tao, Y. Chen, M.A. Mohammad, Q. Xue, X. Zhang, Y. Yang, and T.-L. Ren, “Electrical thermal acoustic point source based on mems technology”. in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). DOI: 10.1109/MEMSYS.2016.7421852.

[43] Q. Xie, Z. Ju, H. Tian, Q. Xue, Y. Chen, L. Tao, M.A. Mohammad, X. Zhang, Y. Yang, and T.-L. Ren, “A point acoustic device based on aluminum nanowires”. Nanoscale, Mar. 2016, DOI: 10.1039/c5nr06999h.

[44] H. Ren, H. Tian, C. L. Gardner, T.-L. Ren, and J. Chae, “A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10,000 W m-3”. Nanoscale, Feb. 2016, DOI: 10.1039/c5nr07267k.

[45] H. Fang, H. Tian, J. Li, Q. Li, J. Dai, T.-L. Ren, G.-F. Dong, and Q.-F. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence”. Nano Energy, Feb. 2016, DOI: 10.1016/j.nanoen.2015.12.001.

[46] P. Shao, H. Zhao, H. Cao, X. Wang, Y. Pang, Y. Li, N. Deng, J. Zhang, G. Zhang, Y. Yang, S. Zhang, and T.-L. Ren, “Enhancement of carrier mobility in MoS2 field effect transistors by a SiO2 protective layer”. Appl. Phys. Lett., May. 2016, DOI: 10.1063/1.4950850.

[47]. T. Zhang, H. Zhao, Z. Yang, Q. Wang, D. Wang, N. Deng, Y. Yang, and T.-L. Ren, “Improved electrothermal performance of custom-shaped micro heater based on anisotropic laser-reduced graphene oxide”. Appl. Phys. Lett., Oct. 2016, DOI: 10.1063/1.4963861.

 

2015

[48] X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device”. Nature Communications, Jul. 2015, DOI: 10.1038/ncomms8767.

[49]. H. Tian, H. Zhao, X. Wang, Q. Xie, H. Chen, M. A. Mohammad, C. Li, W. Mi, Z. Bie, C. H. Yeh, Y. Yang, H. S. P. Wong, P. W. Chiu, and T.-L. Ren, “In Situ Tuning of Switching Window in a Gate-Controlled Bilayer Graphene-Electrode Resistive Memory Device”. Advanced Materials, Dec. 2015, DOI: 10.1002/adma.201503125.

[50] H. Tian, W. Mi, X. Wang, H. Zhao, Q. Xie, C. Li, Y. Li, Y. Yang, and T.-L. Ren, “Graphene Dynamic Synapse with Modulatable Plasticity”. Nano Letters, Dec. 2015, DOI: 10.1021/acs.nanolett.5b03283.

[51] X. Wang, H. Tian, W. G. Xie, Y. Shu, W. Mi, M. A. Mohammad, Q. Xie, Y. Yang, J. Xu, and T.-L. Ren, “Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene”. NPG Asia Materials, Jan. 2015, doi: 10.1038/am.2014.124.

[52] Y. Shu, H. Tian, Y. Yang, C. Li, Y. Cui, W. Mi, Y. Li, Z. Wang, N. Deng, B. Peng, and T.-L. Ren, “Surface-modified piezoresistive nanocomposite flexible pressure sensors with high sensitivity and wide linearity”. Nanoscale, May. 2015, DOI: 10.1039/c5nr01259g.

[53] H. Tian, Y. Shu, X. Wang, M. A. Mohammad, Z. Bie, Q. Xie, C. Li, W. Mi, Y. Yang, and T.-L. Ren, “A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range”. Scientific Reports, Feb. 2015, DOI: 10.1038/srep08603.

[54]. C. Li, Y. L. Cui, G. L. Tian, Y. Shu, X. F. Wang, H. Tian, Y. Yang, F. Wei, and T. L. Ren, “Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture,” Scientific Reports, vol. 5, pp. 15554, Nov 4, 2015, doi: 10.1038/srep15554.

[55] X. Chen, J. Jiang, Q. Liang, N. Yang, H. Ye, M. Cai, L. Shen, D. Yang, and T.-L. Ren, “First-principles study of the effect of functional groups on polyaniline backbone”. Scientific Reports, Nov. 2015, DOI: 10.1038/srep16907.


团队主要成员:

杨轶副教授,yiyang@tsinghua.edu.cn

伍晓明副教授,imewuxm@tsinghua.edu.cn

付军副教授,fujun@tsinghua.edu.cn

王敬副教授,wang_j@tsinghua.edu.cn

谢丹副教授,xiedan@tsinghua.edu.cn

乌力吉副教授,lijiwu@tsinghua.edu.cn

田禾副教授,tianhe88@tsinghua.edu.cn

南天翔助理教授,nantianxiang@tsinghua.edu.cn

刘厚方助理研究员,houfangliu@tsinghua.edu.cn

 

任天令教授团队面向国内外招聘全职教师、博士后,招收博/硕士研究生和本科生。

热诚欢迎有志于科学研究或技术创新工作的优秀青年学者、博/硕士研究生、本科生加入团队!


附:团队近期部分亮点成果报道:

1. 集成电路学院任天令团队在小尺寸晶体管研究方面取得重大突破

https://www.ime.tsinghua.edu.cn/info/1038/1664.htm

2. 集成电路学院任天令团队在柔性声学器件领域取得重要进展

https://www.tsinghua.edu.cn/info/1175/92670.htm

3. 清华大学激光制备蜂窝状石墨烯材料可高屏蔽电磁波,低成本生产

https://www.tsinghua.edu.cn/info/1182/84484.htm

4. 微纳电子系任天令教授团队在钙钛矿光电探测领域取得重要进展

https://www.tsinghua.edu.cn/info/1181/56449.htm

5. 清华微纳电子系任天令团队在纹身式电子皮肤方面取得突破

https://www.tsinghua.edu.cn/info/1181/38148.htm

6. 清华微纳电子系任天令教授团队在仿生石墨烯压力传感器研究取得重要进展

https://www.tsinghua.edu.cn/info/1175/19544.htm

7. 清华微电子所任天令课题组首次实现石墨烯智能人工喉

https://www.tsinghua.edu.cn/info/1175/19909.htm

8. 清华微纳电子系任天令团队在极低功耗阻变存储器研究取得重要进展

https://www.tsinghua.edu.cn/info/1181/40880.htm

9. 微电子所任天令教授课题组首次实现可塑性可调的石墨烯类突触器件

https://www.tsinghua.edu.cn/info/1181/47194.htm

10. 任天令课题组:首次揭示光谱可调变的新型石墨烯发光器件

https://www.tsinghua.edu.cn/info/2116/81148.htm

11. 清华微纳电子系任天令团队在机器学习器件上取得突破

https://www.tsinghua.edu.cn/info/1181/37401.htm

12. 微电子所任天令教授课题组首次揭示存储窗口可调的新型石墨烯阻变存储器

https://www.tsinghua.edu.cn/info/1175/20475.htm