任天令

1061E?e=.png



任天令 长聘教授


通信地址:任天令教授,北京清华大学集成电路学院

邮编:100084

Tel:010-62798569

Fax:010-62771130

E-mail:RenTL@tsinghua.edu.cn








任天令教授,清华大学信息科学技术学院副院长,教育部长江学者特聘教授(2012),国家杰出青年基金获得者,清华大学环境与健康传感技术研究中心副主任。


简介:

1971年出生于山东省济南市,1997年博士毕业于清华大学现代应用物理系,2003年起担任清华大学微电子所教授,2011年至2012年为美国斯坦福大学(Stanford University)大学电子工程系访问教授。

近年来,承担国家自然科学重点基金、国家重大科技专项、国家公益性行业科研专项、国家重大仪器专项、国家863计划、国家973计划等多项国家重要科技项目,做出一系列具有重要国际影响的创新学术成果。主要研究方向为智能微纳电子器件、芯片与系统,包括:智能传感器与智能集成系统,二维纳电子器件与芯片,柔性、可穿戴器件与系统,智能信息器件与系统技术等。在国内外重要学术期刊和会议发表论文600余篇,包括Nature Communications、Energy & Environmental Science、Advanced Materials、ACS Nano、Nano Letters、Biosensors & Bioelectronics、Nanoscale、Carbon、IEEEElectron Device Letters、IEEE Journal of Solid-State Circuits、IEEE Transactions on Electron Devices、IEEE Transactions on Microwave Theory and Techniques、IEEE Microwave and Wireless Components Letters、IEEE Sensors Journal、Applied Physics Letters等重要SCI期刊论文400余篇,国际微电子领域顶级学术会议IEDM论文11篇;获国内外发明专利70余项。

担任IEEE电子器件学会副主席(中国大陆首次)、国际微电子领域顶级学术会议IEDM执委(中国大陆首次)、IEEE电子器件学会教育委员会主席(中国大陆首次)、中国微米纳米技术学会理事、中国仪器仪表学会微纳器件与系统技术分会常务理事、IEEE电子器件学会Distinguished Lecturer、IEEE EDTM 执委、IEEE Journal of Electron Device Society编委、IEEE Transactions on Nanotechnology 编委和Scientific Reports编委等重要学术任职。

作为导师先后培养了近百名优秀的清华博士、硕士研究生与本科生,数十名同学荣获优秀学位论文、优秀毕业生、学术新秀、特等奖学金、启航金奖、IEEE博士/硕士研究生奖、国际学术会议最佳论文等一系列国内外重要学术荣誉。2016年,任天令教授荣获“清华大学良师益友”。


主讲课程:

本科生专业课程《纳电子学导论》

研究生专业课程《新型微纳电子材料与器件》

主要荣誉:

长江学者特聘教授,国家教育部,2012

国家杰出青年基金获得者,国家自然科学基金委员会,2010

新世纪优秀人才支持计划,国家教育部,2004

高等院校青年教师奖,霍英东教育基金会,2003

清华大学学术新人奖,清华大学,2002

“石墨烯智能人工喉”荣获科技导报评选的“中国十大重大技术进展”,2017

“人工智能微纳电子器件”荣获“清华大学十大重大学术成果”,2017

研究方向为智能信息器件与系统,包括:

1. 新型二维智能电子器件与集成系统:

(1)基于石墨烯的智能柔性声学系统;

(2)基于新型二维材料的类脑神经突触;

(3)二维电子器件的片上集成关键技术;

(4)智能光电与射线探测器件与芯片系统;

2.先进智能芯片与系统:

(1)高性能新型介质存储与存储内逻辑技术;

(2)基于磁阻效应或自旋调控的新型器件、芯片技术;

(3)芯片能量控制、芯片信息安全关键新技术;

(4)智能通信射频滤波器、微天线、微电感等;

3. 智能传感器与集成微系统:

(1)微纳声学器件与系统(音频、超声影像等);

(2)集成微传感器(压力、温度、加速度、红外传感器等);

(3)柔性、可穿戴智能器件,及面向生物、医疗健康的新型传感技术;

(4)面向环境、空天、农业等应用的新型传感、探测技术。


近几年部分代表性论文:

2018

[1]. Y. Qiao, Y. Wang, H. Tian, M. Li, J.Jian, Y. Wei, Y. Tian, D. Wang, Y. Pang, X. Geng, X. Wang, Y. Zhao, H. Wang, N. Deng, M. Jian, Y. Zhang, R. Liang, Y. Yang, and T. Ren, "Multilayer Graphene Epidermal Electronic Skin" ACS Nano, Jul. 2018. DOI: 10.1021/acsnano.8b02162.

[2]. Z. Yang, Y. Pang, X. Han, Y. Yang, J. Ling, M. Jian, Y. Zhang, Y. Yang, and T. L. Ren, “Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection,” ACS Nano, Aug. 2018. DOI: 10.1021/acsnano.8b03391.

[3]. Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, Y. Zhang, R. Liang, H. Tian, Y. Yang, and T. L. Ren, "Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity," ACS Nano, vol. 12, no. 3, pp. 2346, Jan. 2018. DOI: 10.1021/acsnano.7b07613.

[4]. Y. Pang, J. Jian, T. Tu, Z. Yang, J. Ling, Y. Li, X. Wang, Y. Qiao, H. Tian, Y. Yang, and T. L. Ren, "Wearable humidity sensor based on porous graphene network for respiration monitoring," Biosens. Bioelectron., vol. 116, pp. 123, Sept. 2018. DOI: 10.1016/j.bios.2018.05.038.

[5]. Z. Yang, D. Wang, Y. Pang, Y. Li, Q. Wang, T. Zhang, J. Wang, X. Liu, Y. Yang, J. Jian, M. Jian, Y. Zhang, Y. Yang, and T. Ren,“Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor,” ACS Appl. Mater. Interfaces, vol. 10, no. 4, pp. 3948–3954, 2018. DOI: 10.1021/acsami.7b16284.

[6]. Y.-F. Yang, L.-Q. Tao, Y. Pang, H. Tian,Z. -Y. Ju,X.-M Wu, Y. Yang and T.-L. Ren, "An ultrasensitive strain sensor with a wide strain range based on graphene armour scales," Nanoscale, vol. 10, no. 24, pp. 11524-11530, Jun 21 2018,DOI: 10.1039/c8nr02652a

[7]. Y. Li, H. Tian, H, Zhao, M, Jian, Y. Lv, Y. Tian, Q. Wang, Y. Yang, Y. Xiang, Y. Zhang, and T. Ren, “A novel cell-scale bio-nanogenerator based on electron–ion interaction for fast light power conversion,” Nanoscale, 2018, vol. 10, no. 2, pp. 526-532. Nov. 2017. DOI: 10.1039/C7NR07671A

2017

[8]. L. Q. Tao, H. Tian, Y. Liu, Z. Y. Ju, Y. Pang, Y. Q. Chen, D. Y. Wang, X. G. Tian, J. C. Yan, N. Q. Deng, Y. Yang, and T. L. Ren, “An intelligent artificial throat with sound-sensing ability based on laser induced graphene,” Nature Communications, vol. 8, pp. 14579, Feb 24, 2017, doi: 10.1038/ncomms14579.

[9]. H. Tian, W. Mi, H. Zhao, M. A. Mohammad, Y. Yang, P. W. Chiu, and T. L. Ren, “A Novel Artificial Synapse with Dual Modes using Bilayer Graphene as the Bottom Electrode,” Nanoscale, 2017, doi: 10.1039/C7NR03106H

[10]. L. Q. Tao, D. Y. Wang, H. Tian, Z.Y. Ju, Y. Liu, Y. Pang, Y. Q. Chen, Y. Yang, and T. L. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale, 2017, doi: 10.1039/C7NR01862B

[11]. Y. Liu, L. Q. Tao, D. Y. Wang, T. Y. Zhang, Y. Yang, and T. L. Ren, “Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure,” Appl. Phys. Lett., vol. 110, no. 12, 2017, doi: 10.1063/1.4978374

[12]. Z. Zhang, H. Tian, P. Lv, Y. Yang, Q. Yang, S. Yang, G. Wang, and T. L. Ren, “High-performance sound source devices based on graphene woven fabrics,” Appl. Phys. Lett., vol. 110, no. 9, 2017, doi: 10.1063/1.4977706

[13]. J. Wang, Y. Li, C. Yin, Y. Yang, T. L. Ren, “Long-Term Depression Mimicked in an IGZO-based Synaptic Transistor,” IEEE Electron Device Letters, vol.38, no.2, pp.191-194, Feb. 2017, doi: 10.1109/LED.2016.2639539

[14]. J. Wang, Y. li, Y. Yang, T. L. Ren, "Top-Gate Electric-Double-Layer IZO-based Synaptic Transistors for Neuron Networks," IEEE Electron Device Letters, vol.38, no.5, May.2017, doi: 10.1109/LED.2017.2690278

[15]. J. Wang, Y. li, Y. Yang, T. L. Ren, " Low-Voltage Unipolar Inverter based on Top-Gate Electric-Double-Layer Thin Film Transistors Gated by Silica Proton Conductor," IEEE Electron Device Letters, vol.38, no.7, Jul.2017, doi: 10.1109/LED.2017.2700293

2016

[16]. Q. Y. Xie, Z. Y. Ju, H. Tian, L. Q. Tao, Y. Q. Chen, M. A. Mohammad, Q. T. Xue, X. Y. Zhang, Y. Yang, and T. L. Ren, "Electrical thermal acoustic point source based on mems technology," in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). pp. 1200-1203, doi: 10.1109/MEMSYS.2016.7421852.

[17]. L. Q. Tao, D. Y. Wang, H. Tian, Z. Y. Ju, Y. Liu, Y. Q. Chen, Q. Y. Xie, H. M. Zhao, Y. Yang, and T. L. Ren, "Tunable and wearable high performance strain sensors based on laser patterned graphene flakes," in 2016 IEEE International Electron Devices Meeting (IEDM). pp. 18.3.1-18.3.4, doi: 10.1109/IEDM.2016.7838445.

[18]. Q. Y. Xie, Z. Y. Ju, H. Tian, Q. T. Xue, Y. Q. Chen, L. Q. Tao, M. A. Mohammad, X. Y. Zhang, Y. Yang, and T. L. Ren, “A point acoustic device based on aluminum nanowires,” Nanoscale, vol. 8, no. 10, pp. 5516-5525, Mar 14, 2016, doi: 10.1039/c5nr06999h.

[19]. H. Ren, H. Tian, C. L. Gardner, T. L. Ren, and J. Chae, “A miniaturized microbial fuel cell with three-dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10 000 W m(-3),” Nanoscale, vol. 8, no. 6, pp. 3539-3547, Feb 14, 2016, doi: 10.1039/c5nr07267k.

[20]. H. J. Fang, H. Tian, J. Li, Q. Li, J. Y. Dai, T. L. Ren, G. F. Dong, and Q. F. Yan, “Self-powered flat panel displays enabled by motion-driven alternating current electroluminescence,” Nano Energy, vol. 20, pp. 48-56, Feb, 2016, doi: 10.1016/j.nanoen.2015.12.001.

[21]. P. Z. Shao, H. M. Zhao, H. W. Cao, X. F. Wang, Y. Pang, Y. X. Li, N. Q. Deng, J. Zhang, G. Y. Zhang, Y. Yang, S. Zhang, and T. L. Ren, “Enhancement of carrier mobility in MoS2 field effect transistors by a SiO2 protective layer,” Appl. Phys. Lett., vol. 108, no. 20, 2016, doi: 10.1063/1.4950850

[22]. X. F. Wang, H. M. Zhao, S. H. Shen, Y. Pang, P. Z. Shao, Y. T. Li, N. Q. Deng, Y. X. Li, Y. Yang, and T. L. Ren, “High performance photodetector based on Pd-single layer MoS2 Schottky junction,” Appl. Phys. Lett., vol. 109, no. 20, 2016, doi: 10.1063/1.4967984

[23]. G. Wang, H. Liu, H. Wu, X. Li, H. Qiu, Y. Yang, B. Qu, T. L. Ren, X. Han, R. Zhang, and H. Wang, “Epitaxial yttrium iron garnet film for fabrication of high frequency on-chip inductors,” Appl. Phys. Lett., vol. 109, no. 16, 2016, doi: 10.1063/1.4964642

[24]. T. Y. Zhang, H. M. Zhao, Z. Yang, Q. Wang, D. Y. Wang, N. Q. Deng, Y. Yang, and T. L. Ren, “Improved electrothermal performance of custom-shaped micro heater based on anisotropic laser-reduced graphene oxide,” Appl. Phys. Lett., vol. 109, no. 15, pp. 1–6, 2016, doi: 10.1063/1.4963861

[25]. J. Xiao, Q. Q. Wei, D. G. Yang, P. Zhang, N. He, G. Q. Zhang, T. L. Ren, X. P. Chen " A CMOS-Compatible Hybrid Plasmonic Slot Waveguide With Enhanced Field Confinement," IEEE Electron Device Letters, vol.37, no.4, Apr.2016, doi: 10.1109/LED.2016.2531990

[26]. Q. Yang, R. S. Meng, J. K. Jiang, Q. H. Liang, C. J. Tan, M. Cai, X. Sun, D. G. Yang, T. L. Ren, X. P. Chen " First-Principles Study of Sulfur Dioxide Sensor Based on Phosphorenes," IEEE Electron Device Letters, vol.37, no.5, May.2016, doi: 10.1109/LED.2016.2543243

[27]. [20] X. G. Tian, L. Q. Tao, B. Liu, C. Zhou, Y. Yang, T. L. Ren, " Surface Acoustic Wave Devices Based on High Quality Temperature-Compensated Substrates," IEEE Electron Device Letters, vol.37, no.8, Aug.2016, doi: 10.1109/LED.2016.2584785

2015

[28]. H. Tian, H. M. Zhao, X. F. Wang, Q. Y. Xie, H. Y. Chen, M. A. Mohammad, C. Li, W. T. Mi, Z. Bie, C. H. Yeh, Y. Yang, H. S. P. Wong, P. W. Chiu, and T. L. Ren, “In Situ Tuning of Switching Window in a Gate-Controlled Bilayer Graphene-Electrode Resistive Memory Device,” Advanced Materials, vol. 27, no. 47, pp. 7767-7774, Dec 16, 2015, doi: 10.1002/adma.201503125.

[29]. H. Tian, W. T. Mi, X. F. Wang, H. M. Zhao, Q. Y. Xie, C. Li, Y. X. Li, Y. Yang, and T. L. Ren, “Graphene Dynamic Synapse with Modulatable Plasticity,” Nano Letters, vol. 15, no. 12, pp. 8013-8019, Dec, 2015, doi: 10.1021/acs.nanolett.5b03283.

[30]. X. M. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nature Communications, vol. 6, pp. 7767, Jul, 2015, doi: 10.1038/ncomms8767.

[31]. X. M. Wang, H. Tian, W. G. Xie, Y. Shu, W. T. Mi, M. A. Mohammad, Q. Y. Xie, Y. Yang, J. B. Xu, and T. L. Ren, “Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene,” NPG Asia Materials, vol. 7, Jan, 2015, doi: 10.1038/am.2014.124.

[32]. Y. Shu, H. Tian, Y. Yang, C. Li, Y. L. Cui, W. T. Mi, Y. X. Li, Z. Wang, N. Q. Deng, B. Peng, and T. L. Ren, “Surface-modified piezoresistive nanocomposite flexible pressure sensors with high sensitivity and wide linearity,” Nanoscale, vol. 7, no. 18, pp. 8636-8644, May 14, 2015, doi: 10.1039/c5nr01259g.

[33]. Y. C. Tian, H. Tian, Y. L. Wu, L. L. Zhu, L. Q. Tao, W. Zhang, Y. Shu, D. Xie, Y. Yang, Z. Y. Wei, X. H. Lu, T. L. Ren, C. K. Shih, and J. M. Zhao, “Coherent Generation of Photo-Thermo-Acoustic Wave from Graphene Sheets,” Scientific Reports, vol. 5, pp. 10582, Jun 8, 2015, doi: 10.1038/srep10582.

[34]. H. Tian, Y. Shu, X. F. Wang, M. A. Mohammad, Z. Bie, Q. Y. Xie, C. Li, W. T. Mi, Y. Yang, and T. L. Ren, “A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range,” Scientific Reports, vol. 5, pp. 8603, Feb 27, 2015, doi: 10.1038/srep08603.

[35]. C. Li, Y. L. Cui, G. L. Tian, Y. Shu, X. F. Wang, H. Tian, Y. Yang, F. Wei, and T. L. Ren, “Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture,” Scientific Reports, vol. 5, pp. 15554, Nov 4, 2015, doi: 10.1038/srep15554.

[36]. X. P. Chen, J. K. Jiang, Q. H. Liang, N. Yang, H. Y. Ye, M. Cai, L. Shen, D. G. Yang, and T. L. Ren, “First-principles study of the effect of functional groups on polyaniline backbone,” Scientific Reports, vol. 5, pp. 16907, Nov 20, 2015, doi: 10.1038/srep16907.

[37]. R. J. Chen, Y. L. Cui, H. Tian, R. M. Yao, Z. P. Liu, Y. Shu, C. Li, Y. Yang, T. L. Ren, G. Zhang, and R. Q. Zou, “Controllable Thermal Rectification Realized in Binary Phase Change Composites,” Scientific Reports, vol. 5, pp. 8884, Mar 9, 2015, doi: 10.1038/srep08884.

[38]. X. P. Chen, N. Yang, J. K. Jiang, Q. H. Liang, D. G. Yang, G. Q. Zhang, T. L. Ren, " Ab Initio Study of Temperature, Humidity, and Covalent Functionalization-Induced Bandgap Change of Single-Walled Carbon Nanotubes," IEEE Electron Device Letters, vol.36, no.6, Jun.2015, doi: 10.1109/LED.2015.2425046

[39]. X. P. Chen, N. Yang, J. M. Ni, M. Cai, H. Y. Ye, C. K. Y. Wong, S. Y. Y. Leung, T. L. Ren, "Density-Functional Calculation of Methane Adsorption on Graphenes," IEEE Electron Device Letters, vol.36, no.12, Dec.2015, doi: 10.1109/LED.2015.2492580

2014

[40]. H. Tian, H. Y. Chen, T. L. Ren, C. Li, Q. T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H. S. P. Wong, “Cost-Effective, Transfer-Free, Flexible Resistive Random Access Memory Using Laser-Scribed Reduced Graphene Oxide Patterning Technology,” Nano Letters, vol. 14, no. 6, pp. 3214-3219, Jun, 2014, doi: 10.1021/nl5005916.

[41]. N. Liu, H. Tian, G. Schwartz, J. B. H. Tok, T. L. Ren, and Z. N. Bao, “Large-Area, Transparent, and Flexible Infrared Photodetector Fabricated Using P-N Junctions Formed by N-Doping Chemical Vapor Deposition Grown Graphene,” Nano Letters, vol. 14, no. 7, pp. 3702-3708, Jul, 2014, doi: 10.1021/nl500443j.

[42]. H. M. Zhao, Y. C. Lin, C. H. Yeh, H. Tian, Y. C. Chen, D. Xie, Y. Yang, K. Suenaga, T. L. Ren, and P. W. Chiu, “Growth and Raman Spectra of Single-Crystal Trilayer Graphene with Different Stacking Orientations,” ACS Nano, vol. 8, no. 10, pp. 10766-10773, Oct, 2014, doi: 10.1021/nn5044959.

[43]. H. Tian, C. Li, M. A. Mohammad, Y. L. Cui, W. T. Mi, Y. Yang, D. Xie, and T. L. Ren, “Graphene Earphones: Entertainment for Both Humans and Animals,” ACS Nano, vol. 8, no. 6, pp. 5883-5890, Jun, 2014, doi: 10.1021/nn5009353.

[44]. D. Wang, H. Tian, I. Martin-Fernandez, Y. Yang, T. L. Ren, and Y. Zhang, "Large-scale fabrication of graphene-based electronic and MEMS devices," in 2014 IEEE International Electron Devices Meeting. pp. 15.2.1-15.2.4, doi: 10.1109/IEDM.2014.7047056.

[45]. H. Tian, Y. Yang, C. Li, M. A. Mohammad, and T. L. Ren, "Flexible, transparent single-layer graphene earphone," in 2014 IEEE International Electron Devices Meeting. pp. 15.3.1-15.3.4, doi: 10.1109/IEDM.2014.7047057.

[46]. H. Tian, Y. L. Cui, Y. Yang, D. Xie, and T. L. Ren, "Wafer-scale flexible graphene loudspeakers," in 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). pp. 556-559, doi: 10.1109/MEMSYS.2014.6765701.

[47]. H. Ren, H. Tian, T. L. Ren, and J. Chae, "A micro-scale microbial supercapacitor," in 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). pp. 362-365, doi: 10.1109/MEMSYS.2014.6765651.

[48]. H. Tian, Y. Shu, X. F. Wang, M. A. Mohammad, C. Li, Y. Yang, and T. L. Ren, "An ultra-sensitive resistive pressure sensor based on the V-shaped foam-like structure of laser-scribed graphene," in 2014 IEEE International Electron Devices Meeting. pp. 15.1.1-15.1.4, doi: 10.1109/IEDM.2014.7047055.

[49]. H. Tian, Y. Shu, Y. L. Cui, W. T. Mi, Y. Yang, D. Xie, and T. L. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale, vol. 6, no. 2, pp. 699-705, Jan 21, 2014, doi: 10.1039/c3nr04521h.

[50]. J. L. Xu, D. Xie, T. T. Feng, C. H. Zhang, X. W. Zhang, P. G. Peng, D. Fu, H. Qian, T. L. Ren, and L. T. Liu, “Scaling-down characteristics of nanoscale diamond-like carbon based resistive switching memories,” Carbon, vol. 75, pp. 255-261, Aug, 2014, doi: 10.1016/j.carbon.2014.03.061.

[51]. H. Tian, Y. Yang, D. Xie, Y. L. Cui, W. T. Mi, Y. G. Zhang, and T. L. Ren, “Wafer-Scale Integration of Graphene-based Electronic, Optoelectronic and Electroacoustic Devices,” Scientific Reports, vol. 4, pp. 3598, Jan 8, 2014, doi: 10.1038/srep03598.

[52]. H. Tian, Z. Tan, C. Wu, X. M. Wang, M. A. Mohammad, D. Xie, Y. Yang, J. Wang, L. J. Li, J. Xu, and T. L. Ren, “Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions,” Scientific Reports, vol. 4, pp. 5951, Aug 11, 2014, doi: 10.1038/srep05951.

[53]. J. Xu, D. Xie, C. Zhang, X. Zhang, P. Peng, D. Fu, H. Qian, T. L. Ren, and L. Liu, “Pulse widths dependence of programming and erasing behaviors for diamond like carbon based resistive switching memories,” Appl. Phys. Lett., vol. 105, no. 17, 2014, doi: 10.1063/1.4898345

2013

[54]. Y. X. Lin, X. Li, D. Xie, T. Feng, Y. Chen, R. Song, H. Tian, T. L. Ren, M. Zhong, K. Wang, and H. Zhu, “Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function,” Energy Environ. Sci., vol. 6, no. 1, pp. 108–115, 2013, doi: 10.1039/C2EE23538B.

[55]. H. Tian, H. Y. Chen, B. Gao, S. Yu, J. Liang, Y. Yang, D. Xie, J. Kang, T. L. Ren, Y. Zhang, and H.-S. P. Wong, “Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode,” Nano Lett., vol. 13, no. 2, pp. 651–657, Feb. 2013, doi: 10.1021/nl304246d.

[56]. H. L. Cai, Y. Yang, C. R. Guo, C. J. Zhou, T. X. Ye, C. Wu, H. Tian, D. Xie, J. Liu, and T. L. Ren, “A high order mode 6.4GHz ultra-high sensitivity nanoscale surface acoustic wave biosensor,” in 2013 IEEE International Electron Devices Meeting, 2013, p. 18.2.1-18.2.4, doi: 10.1109/IEDM.2013.6724652.

[57]. H. Tian, Y. Yang, D. Xie, Y. Shu, Y. L. Cui, C. Wu, H. L. Cai, and T. L. Ren, “Wafer-scale flexible graphene strain sensors,” in 2013 IEEE International Electron Devices Meeting, 2013, p. 14.6.1-14.6.4, doi: 10.1109/IEDM.2013.6724632.

[58]. H. Tian, Y. Yang, D. Xie, T. L. Ren, Y. Shu, C. J. Zhou, L. Q. Tao, and L. T. Liu, “Flexible and large-area sound-emitting device using reduced graphene oxide,” in 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013, vol. 5, pp. 709–712, doi: 10.1109/MEMSYS.2013.6474341.

[59]. H. Tian, Y. Yang, D. Xie, T. L. Ren, Y. Shu, C. J. Zhou, H. Sun, X. Liu, and C. H. Zhang, “A novel flexible capacitive touch pad based on graphene oxide film,” Nanoscale, vol. 5, no. 3, pp. 890–894, 2013, doi: 10.1039/C2NR33455K.

[60]. H. Sun, H. Tian, Y. Yang, D. Xie, Y. C. Zhang, X. Liu, S. Ma, H. M. Zhao, and T. L. Ren, “A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube,” Nanoscale, vol. 5, no. 13, p. 6117, 2013, doi: 10.1039/c3nr00866e.

[61]. H. Tian, S. Ma, H. M. Zhao, C. Wu, J. Ge, D. Xie, Y. Yang, and T. L. Ren, “Flexible electrostatic nanogenerator using graphene oxide film,” Nanoscale, vol. 5, no. 19, p. 8951, 2013, doi: 10.1039/c3nr01658g.

[62]. H. Tian, S. Ma, H. M. Zhao, C. Wu, J. Ge, D. Xie, Y. Yang, and T. L. Ren, “Flexible electrostatic nanogenerator using graphene oxide film,” Nanoscale, vol. 5, no. 19, p. 8951, 2013, doi: 10.1039/c3nr01658g.

[63]. Z. Tan, H. Tian, T. Feng, L. Zhao, D. Xie, Y. Yang, L. Xiao, J. Wang, T. L. Ren, and J. Xu, “A small-signal generator based on a multi-layer graphene/molybdenum disulfide heterojunction,” Appl. Phys. Lett., vol. 103, no. 26, 2013, doi: 10.1063/1.4859655.

[64]. T. Feng, D. Xie, H. Zhao, G. Li, J. Xu, T. L. Ren, and H. Zhu, “Ambipolar/unipolar conversion in graphene transistors by surface doping,” Appl. Phys. Lett., vol. 103, no. 19, 2013, doi: 10.1063/1.4827879.

[65]. Z. Jia, L. Wang, N. Zhang, T. L. Ren, and J. J. Liou, “Effects of anode materials on resistive characteristics of NiO thin films,” Appl. Phys. Lett., vol. 102, no. 4, 2013, doi: 10.1063/1.4789523.

[66]. C. Zhou, Y. Yang, H. Cai, T. L. Ren, M. Chan, and C. Y. Yang, “Temperature-Compensated High-Frequency Surface Acoustic Wave Device,” IEEE Electron Device Lett., vol. 34, no. 12, pp. 1572–1574, Dec. 2013, doi: 10.1109/LED.2013.2283305.


团队主要成员:

杨轶副教授,010-62798052,yiyang@tsinghua.edu.cn

伍晓明副教授,010-62798742,imewuxm@tsinghua.edu.cn

付军副教授,010-62798434,fujun@tsinghua.edu.cn

王敬副教授,010-62789152,wang_j@tsinghua.edu.cn

谢丹副教授,010-62798392,xiedan@tsinghua.edu.cn

田禾副教授,010-62798052,tianhe88@tsinghua.edu.cn

梁仁荣,010-62791272,liangrr@tsinghua.edu.cn

任天令教授团队招聘教师、博士后,招收博/硕士研究生和本科生。

欢迎有志于从事科研或技术工作的优秀青年学者、博/硕士研究生、本科生加入本团队!

附:


近期部分亮点成果:

1、清华微纳电子系任天令团队在纹身式电子皮肤方面取得突破

http://www.tsinghua.edu.cn/publish/thunews/9649/2018/20180731114158415452556/20180731114158415452556_.html

2、清华微纳电子系任天令教授团队在仿生石墨烯压力传感器研究取得重要进展

http://news.tsinghua.edu.cn/publish/thunews/9659/2018/20180225083653199191933/20180225083653199191933_.html

3、清华微电子所任天令课题组首次实现石墨烯智能人工喉

http://news.tsinghua.edu.cn/publish/thunews/9659/2017/20170301133928684416844/20170301133928684416844_.html?wuxi=

4、清华微纳电子系任天令团队在极低功耗阻变存储器研究取得重要进展

http://news.tsinghua.edu.cn/publish/thunews/9659/2017/20171213094010758422308/20171213094010758422308_.html

5、微电子所任天令教授课题组首次实现可塑性可调的石墨烯类突触器件

http://news.tsinghua.edu.cn/publish/thunews/9659/2016/20160307105830090873686/20160307105830090873686_.html?cid=3&ie=utf8&query=1

6、清华微纳电子系任天令教授团队在石墨烯纸基压力传感器研究取得重要进展

http://news.tsinghua.edu.cn/publish/thunews/9659/2017/20170824105036066474674/201708241